POJ(Programming Online Judge)是一个著名的在线编程评测系统,其中的1001题是关于指数运算的问题。这个问题通常被称为”Exponentiation”,要求编写一个程序来计算一个浮点数的整数次幂。
题目描述
给定一个浮点数 ( a ) 和一个整数 ( n ),计算 ( a^n ) 的值。
输入格式
输入包含多组数据,每组数据一行,包含两个数:一个浮点数 ( a ) 和一个整数 ( n )。输入以EOF(文件结束符)结束。
输出格式
对于每组输入数据,输出一行,包含计算结果 ( a^n ),结果保留小数点后三位。
示例
输入:
2.000 3
4.000 2
输出:
8.000
16.000
解题思路
- 读取输入:使用循环不断读取输入直到EOF。
- 计算幂:使用幂运算函数(如Python中的
**
操作符或pow
函数)计算 ( a^n )。 - 格式化输出:将结果保留三位小数输出。
Python代码示例
import sys
def main(): input = sys.stdin.read data = input().strip().split('\n')
for line in data:
if line.strip():
a, n = map(float, line.split())
result = a ** int(n)
print(f"{result:.3f}")
if name == "main": main()
注意事项
- 浮点数精度:在计算过程中要注意浮点数的精度问题,尤其是在输出时需要格式化保留三位小数。
- 大数处理:对于较大的 ( n ),直接计算 ( a^n ) 可能会导致溢出或计算时间过长,可以考虑使用快速幂算法优化。
- 输入结束:题目要求以EOF结束输入,因此在实际比赛中需要使用适当的输入方式来处理EOF。
快速幂算法(优化)
对于较大的 ( n ),可以使用快速幂算法来优化计算过程:
def fast_pow(a, n):
result = 1.0
while n > 0:
if n % 2 == 1:
result = a
a = a
n //= 2
return result
def main(): input = sys.stdin.read data = input().strip().split('\n')
for line in data:
if line.strip():
a, n = map(float, line.split())
result = fast_pow(a, int(n))
print(f"{result:.3f}")
if name == "main": main()
通过这种方式,可以在 ( O(\log n) ) 的时间复杂度内完成幂运算,显著提高效率。
希望这个详细的解答能帮助你理解和解决POJ 1001问题。如果有更多问题,欢迎继续提问!
发表回复